Course Synopses

16:750:612 HIGH-ENERGY ASTROPHYSICS (3)

  • Course Description:

    Prerequisite: 750:341-342 or equivalent. The origin and detection of high energy photons and particles in the universe. Radiation processes in low density media. Sites of high energy phenomena in astrophysics, such as supernovae, pulsars, active galactic nuclei and quasars and processes such as accretion and shocks.

    The Universe is filled with diverse objects and phenomena ranging from those with very low characteristic temperatures, such as the 2.7 K Cosmic Microwave Background Radiation, to the ultrahigh energy cosmic rays in which a single particle can carry 10 J or more of energy. Accordingly in order to attempt a complete understanding of cosmic objects and events, astrophysicists have been driven to conduct studies over the entire electromagnetic spectrum. In this course, the focus will be on the study of high energy astrophysics, that is to say, the field of astronomy that concerns itself with objects and phenomena having a characteristic temperature greater than about 10^6 K or equivalently 0.1 keV. This includes the X-ray and gamma-ray bands of the electromagnetic spectrum, cosmic rays, and neutrinos from the Sun and supernovae. The field is relatively new: cosmic rays were discovered in 1912 (although not explained as high energy particles until 1929) and, although, X-rays were discovered by Rongten in 1895, X-ray astronomy wasn't born until 1949 when the Sun was discovered as the first extraterrestrial X-ray source. In general the history of X-ray and gamma-ray astronomy has paralleled the history of space exploration. Neutrino astronomy is even younger, commencing with the Homestake gold mine experiment in the 1970's which gave rise to the famous "solar neutrino" problem.

    This course is intended to provide the student with sufficient background material and knowledge in order to appreciate current research literature in high energy astrophysics. It will draw on graduate level physics and astronomy as prerequisites. Although the text listed above is required, some course material will be taken from other sources, such as "Radiative Precesses in Astrophysics" by Rybicki and Lightman (Wiley), particularly for lectures on radiative processes. Students might consider looking at the readable book on X-ray astronomy "Exploring the X-ray Universe" by Charles and Seward (Cambridge).

  • Learning Management System: http://www.physics.rutgers.edu/grad/612/