Calendar of Events

Events Calendar

Catching and reversing a quantum jump mid-flight

Date and Time: Wednesday, April 24, 2019, 10:30am - 11:30am
Location: Physics and Astronomy Lecture Hall
 

Speaker: Michel Devoret (Applied Physics, Yale University)

Measurements in quantum physics, unlike their classical physics counterparts, can fundamentally yield discrete and random results. Emblematic of this feature is Bohr’s hypothesis of quantum jumps between two discrete energy levels of an atom. Experimentally, quantum jumps were first observed in an atomic ion driven by a weak deterministic force under strong continuous energy measurement. The times at which the discontinuous jump transitions occur are reputed to be fundamentally unpredictable. Despite the non-deterministic character of quantum physics, is it possible to know if a quantum jump is about to occur? Here we provide a positive answer to this question: we experimentally show that the jump from the ground state to an excited state of a superconducting artificial three-level atom can be tracked as it follows a predictable “flight” by monitoring the population of an auxiliary energy level coupled to the ground state. The experimental results1 demonstrate that the evolution of the jump — once completed — is continuous, coherent, and deterministic. Based on these insights and aided by real-time monitoring and feedback, we then pinpoint and reverse one such quantum jump “mid-flight”, thus deterministically preventing its completion. Our findings, which agree with theoretical predictions essentially without adjustable parameters, lend support to the modern formulation of quantum trajectory theory; most important, they may provide new ground for the exploration of real-time intervention techniques in the control of quantum systems, such as the early detection of error syndromes.

1Z. Minev et al., arXiv:1803.00545 (to appear in Nature)

Extra Info: Please contact our administrative assistant Lisa Rivera (lrivera at physics.rutgers.edu) with questions regarding travel arrangements and reimbursements. Questions about the colloquium schedule should be addressed to Prof. Misha Gershenson (gersh at physics.rutgers.edu).
  • Host: Misha Gershenson
  • Tea, coffee, and cookies served at 10:20
  • All welcome!