Calendar of Events
Events Calendar
Hubbard model physics in moiré materials
Speaker: Kin Fai Mak, Cornell University
Abstract: The Hubbard model is a simple theoretical model of interacting quantum particles in a lattice. It is thought to capture the essential physics of high-temperature superconductors and other complex quantum many-body phenomena, but has proved difficult to solve accurately. Physical realizations of the Hubbard model therefore have a vital role to play in solving the strong-correlation puzzle. Moiré materials, metamaterials built on artificial “moiré atoms”, have recently emerged as a promising Hubbard model simulator. The ability to continuously control the Hubbard Hamiltonian in these materials has provided a unique opportunity to address some of the long-standing questions in condensed matter physics. For instance, can unconventional superconductivity and quantum spin liquids emerge from the Hubbard model? In this talk, I will discuss recent efforts to simulate Hubbard model physics in moiré materials. Specific examples on realizing the Mott insulating state, the Mott-Hubbard transition and electron crystals will be discussed. I will end with a brief discussion on opportunities and challenges for future studies.
Host: Eva Andrei
Password: 817908